Explore Courses

Why Pagodas Don’t Fall Down Reading Answers IELTS Sample

Updated on 19 December, 2022

Mrinal Mandal

Mrinal Mandal

Study Abroad Expert

Reading answers for IELTS Banner

The IELTS reading examination is easy to attempt if you practice as many IELTS sample papers as possible. Here’s a reading passage for the topic 'Why Pagodas Don’t Fall Down' with questions and answers to help you prepare.

  1. In a land swept by typhoons and shaken by earthquakes, how have Japan's tallest and seemingly flimsiest old buildings - 500 or so wooden pagodas - remained standing for centuries? Records show that only two have collapsed during the past 1400 years. Those that have disappeared were destroyed by fire as a result of lightning or civil war. The disastrous Hanshin earthquake in 1995 killed 6,400 people, toppled elevated highways, flattened office blocks and devastated the port area of Kobe. Yet it left the magnificent five-storey pagoda at the Toji temple in nearby Kyoto unscathed, though it levelled a number of buildings in the neighborhood.
  2. Japanese scholars have been mystified for ages about why these tall, slender buildings are so stable. It was only thirty years ago that the building industry felt confident enough to erect office blocks of steel and reinforced concrete that had more than a dozen floors. With its special shock absorbers to dampen the effect of sudden sideways movements from an earthquake, the thirty-six-storey Kasumigaseki building in central Tokyo - Japan's first skyscraper - was considered a masterpiece of modern engineering when it was built in 1968.
  3. Yet in 826, with only pegs and wedges to keep his wooden structure upright, the master builder Kobodaishi had no hesitation in sending his majestic Toji pagoda soaring fifty-five metres into the sky - nearly half as high as the Kasumigaseki skyscraper built some eleven centuries later. Clearly, Japanese carpenters of the day knew a few tricks about allowing a building to sway and settle itself rather than fight nature's forces. But what sort of tricks?
  4. The multi-storey pagoda came to Japan from China in the sixth century. As in China, they were first introduced with Buddhism and were attached to important templesThe Chinese built their pagodas in brick or stone, with inner staircases, and used them in later centuries mainly as watchtowers. When the pagoda reached Japan, however, its architecture was freely adapted to local conditions - they were built less high, typically five rather than nine storeys, made mainly of wood and the staircase was dispensed with because the Japanese pagoda did not have any practical use but became more of an art object. Because of the typhoons that batter Japan in the summer, Japanese builders learned to extend the eaves of buildings further beyond the walls. This prevents rainwater gushing down the walls. Pagodas in China and Korea have nothing like the overhang that is found on pagodas in Japan
  5. The roof of a Japanese temple building can be made to overhang the sides of the structure by fifty per cent or more of the building's overall width. For the same reason, the builders of Japanese pagodas seem to have further increased their weight by choosing to cover these extended eaves not with the porcelain tiles of many Chinese pagodas but with much heavier earthenware tiles.
  6. But this does not totally explain the great resilience of Japanese pagodas. Is the answer that, like a tall pine tree, the Japanese pagoda - with its massive trunk-like central pillar known as shinbashira - simply flexes and sways during a typhoon or earthquake? For centuries, many thought so. But the answer is not so simple because the startling thing is that the shinbashira actually carries no load at all. In fact, in some pagoda designs, it does not even rest on the ground, but is suspended from the top of the pagoda - hanging loosely down through the middle of the building. The weight of the building is supported entirely by twelve outer and four inner columns.
  7. And what is the role of the shinbashira, the central pillar? The best way to understand the shinbashira's role is to watch a video made by Shuzo Ishida, a structural engineer at Kyoto Institute of Technology. Mr. Ishida, known to his students as 'Professor Pagoda' because of his passion to understand the pagoda, has built a series of models and tested them on a 'shake-table' in his laboratory. In short, the shinbashira was acting like an enormous stationary pendulum. The ancient craftsmen, apparently without the assistance of very advanced mathematics, seemed to grasp the principles that were, more than a thousand years later, applied in the construction of Japan's first skyscraper. Viewed from the side, the pagoda seemed to be doing a snake dance - with each consecutive floor moving in the opposite direction to its neighbours above and below. The shinbashira, running up through a hole in the centre of the building, constrained individual storeys from moving too far because, after mWhat those early craftsmen had found by trial and error was that under pressure a pagoda's loose stack of floors could be made to slither to and fro independent of one another. oving a certain distance, they banged into it, transmitting energy away along the column.
  8. Another strange feature of the Japanese pagoda is that, because the building tapers, with each successive floor plan being smaller than the one below, none of the vertical pillars that carry the weight of the building is connected to its corresponding pillar above. In other words, a five-storey pagoda contains not even one pillar that travels right up through the building to carry the structural loads from the top to the bottom. More surprising is the fact that the individual storeys of a Japanese pagoda, unlike their counterparts elsewhere, are not actually connected to each other. They are simply stacked one on top of another like a pile of hats. Interestingly, such a design would not be permitted under current Japanese building regulations.
  9. And the extra-wide eaves? Think of them as a tightrope walker's balancing pole. The bigger the mass at each end of the pole, the easier it is for the tightrope walker to maintain his or her balance. The same holds true for a pagoda. 'With the eaves extending out on all sides like balancing poles,' says Mr Ishida, 'the building responds to even the most powerful jolt of an earthquake with a graceful swaying, never an abrupt shaking.' Here again, Japanese master builders of a thousand years ago anticipated concepts of modern structural engineering.

Download E-Books for IELTS Preparation

IELTS IDIOMS GUIDE
ielts sample essays

Questions 1-4

Do the following statements agree with the claims of the writer in Reading Passage?

In boxes 1-4 on your answer sheet, write

YESif the statement is true
NOif the statement is false
NOT GIVENif the information is not given in passage

Guidelines/Tip for Answering These Types of Questions: Candidates need to understand each section of the text in detail and then skim for relevant information.

 Only two Japanese pagodas have collapsed in 1400 years.

 The Hanshin earthquake of 1995 destroyed the pagoda at the Toji temple.

 The other buildings near the Toji pagoda had been built in the last 30 years.

 The builders of pagodas knew how to absorb some of the power produced by severe weather conditions.

 

Download IELTS Preparation Guide For Free

Get to know about the latest updates on the IELTS Exam, Eligibility, Preparation Tips, Test procedure,  Exam Pattern, Syllabus, Registration Process, Important Exam Dates, and much more!! This guide is a one-stop solution for every IELTS Aspirant who aims to crack the exam with an impressive band score.

Questions 5-10

Classify the following as typical of

A    both Chinese and Japanese pagodas

B    only Chinese pagodas

C    only Japanese pagodas

Write the correct letter, A, B or C, in boxes 5-10 on your answer sheet.

 easy interior access to top

 tiles on eaves

 use as observation post

 size of eaves up to half the width of the building

 original religious purpose

10  floors fitting loosely over each other

Guidelines/Tip for Answering These Types of Questions: Candidates need to skim the passage and identify where the crucial information is located.

Questions 11-13

Choose the correct letter, A, B, C or D.

Write the correct letter in boxes 11-13 on your answer sheet.

11  In a Japanese pagoda, the shinbashira 

A  bears the full weight of the building. 

B  bends under pressure like a tree.

C  connects the floors with the foundations.

D  stops the floors moving too far.

12  Shuzo Ishida performs experiments in order to

A  improve skyscraper design.

B  be able to build new pagodas.

C  learn about the dynamics of pagodas.

D  understand ancient mathematics.

13  The storeys of a Japanese pagoda are

A  linked only by wood.

B  fastened only to the central pillar.

C  fitted loosely on top of each other.

D  joined by special weights.

Guidelines/Tip for Answering These Types of Questions: Candidates need to understand each section of the text in detail and then skim for relevant information.

Solutions 1-4

Question

Answer

Explanation

1

Yes

Paragraph A talks about how in 1400 years, only two had collapsed.

2

No

The last two lines of paragraph A clearly mention that the Toji temple was left unscathed by the Hanshin earthquake of 1995

3

Not given

We don’t find any lines pointing to this statement.

4

Yes

The last few lines of paragraph D talk about how Japanese builders had learned to extend the eaves of buildings including their pagodas so that the rainwater could be  prevented from flowing down the walls.

Solutions 5-10

Question

Answer

Explanation

5

B

In paragraph D, we read that the Chinese pagodas had inner staircases, which means that they had easy interior access to the top.

6

A

In paragraph E, it is mentioned that the Japanese pagodas use porcelain tiles while the Chinese ones use earthen tiles on their eaves.

7

B

The sentence “The Chinese built their pagodas in brick or stone, with inner staircases, and used them in later centuries mainly as watchtowers” in paragraph D proves this.

8

In paragraph E, we read about how the roof of a Japanese temple building can be constructed such that it overhangs the sides of the structure by fifty per cent or more of the building's width.

9

A

Paragraph D mentions that pagodas were first introduced along with Buddhism to China. In both Japan and China, pagodas are considered to be temples.


 

10

C

Paragraph G talks about the Japanese pagodas having floors stacked loosely one on top of the other.

Solutions 11-13

Question

Answer

Explanation

11

D

In paragraph G, the line that talks about how the shinbashira runs up through a hole in the centre of the building, restricts the individual storeys from moving too far, shows us that D is the answer.

12

C

Paragraph G shows us how Shuzo Ishida was passionate about understanding how a pagoda was constructed.

13

C

We see in paragraph G that a Japanese pagoda’s floors could be made to slither to and fro. This was possible because the floors were stacked loosely on top of each other.

Important IELTS Exam Resources

IELTS Exam Overview

IELTS is required to be taken by international students and workers who wish to study or work in a country where English is the primary language of communication. Know the complete details.

IELTS Online Test

IELTS Exam Syllabus

With the right knowledge of the IELTS exam syllabus and pattern, cracking the popular English test won’t be difficult.

IELTS Syllabus

IELTS Exam Pattern

The IELTS exam pattern encompasses four major sections, i.e. listening, speaking, writing, and reading.

IELTS Exam Pattern

Mrinal Mandal

Study Abroad Expert
Disclaimer

The above tips are the Author's experiences. upGrad does not guarantee scores or admissions.